Package index
-
arx() - Estimate an AR-X model with log-ARCH-X errors
-
as.arx() - Convert an object to class 'arx'
-
as.lm() - Convert to 'lm' object
-
biascorr() - Bias-correction of coefficients following general-to-specific model selection
-
blocksFun() - Block-based General-to-Specific (GETS) modelling
-
coef(<arx>)fitted(<arx>)logLik(<arx>)model.matrix(<arx>)nobs(<arx>)plot(<arx>)print(<arx>)residuals(<arx>)sigma(<arx>)summary(<arx>)vcov(<arx>) - Extraction functions for 'arx' objects
-
coef(<gets>)fitted(<gets>)logLik(<gets>)plot(<gets>)predict(<gets>)print(<gets>)residuals(<gets>)sigma(<gets>)summary(<gets>)vcov(<gets>) - Extraction functions for 'gets' objects
-
coef(<isat>)fitted(<isat>)logLik(<isat>)plot(<isat>)predict(<isat>)print(<isat>)residuals(<isat>)sigma(<isat>)summary(<isat>)vcov(<isat>) - Extraction functions for 'isat' objects
-
coef(<larch>)fitted(<larch>)logLik(<larch>)model.matrix(<larch>)nobs(<larch>)plot(<larch>)print(<larch>)residuals(<larch>)summary(<larch>)toLatex(<larch>)vcov(<larch>) - Methods and extraction functions for 'larch' objects
-
coef(<logitx>)fitted(<logitx>)logLik(<logitx>)plot(<logitx>)print(<logitx>)summary(<logitx>)toLatex(<logitx>)vcov(<logitx>) - Extraction functions for 'logitx' objects
-
diagnostics() - Diagnostics tests
-
distorttest() - Jiao-Pretis-Schwarz Outlier Distortion Test
-
distorttestboot()print(<distorttestboot>) - Bootstrapped Jiao-Pretis-Schwarz Outlier Distortion Test
-
dropvar() - Drop variable
-
gets-package - General-to-Specific (GETS) and Indicator Saturation (ISAT) Modelling
-
gets() - General-to-Specific (GETS) Modelling
-
gets(<isat>) - General-to-Specific (GETS) Modelling 'isat' objects
-
gets(<larch>) - General-to-Specific (GETS) Modelling of a heterogeneous log-ARCH-X model
-
gets(<lm>) - General-to-Specific (GETS) Modelling 'lm' objects
-
gets(<logitx>) - General-to-Specific (GETS) Modelling of objects of class 'logitx'
-
getsFun() - General-to-Specific (GETS) modelling function
-
getsm()getsv() - General-to-Specific (GETS) Modelling of an AR-X model (the mean specification) with log-ARCH-X errors (the log-variance specification).
-
gmm() - Generalised Method of Moment (GMM) estimation of linear models
-
hpdata - Hoover and Perez (1999) data
-
infldata - Quarterly Norwegian year-on-year CPI inflation
-
infocrit()info.criterion() - Computes the Average Value of an Information Criterion
-
isat() - Indicator Saturation
-
isatdates() - Extracting Indicator Saturation Breakdates
-
isatloop() - Repeated Impulse Indicator Saturation
-
isattest() - Indicator Saturation Test
-
isatvar() - Variance of the coefficient path
-
isatvarcorrect() - Consistency and Efficiency Correction for Impulse Indicator Saturation
-
isvarcor() - IIS Consistency Correction
-
isvareffcor() - IIS Efficiency Correction
-
larch() - Estimate a heterogeneous log-ARCH-X model
-
larchEstfun() - Estimation of a log-variance model
-
logit() - Estimation of a logit model
-
logitxSim()dlogitxSim() - Simulate from a dynamic logit-x model
-
mvrnormsim() - Simulate from a Multivariate Normal Distribution
-
ols() - OLS estimation
-
outlierscaletest() - Sum and Sup Scaling Outlier Tests
-
outliertest() - Jiao and Pretis Outlier Proportion and Count Tests
-
paths()terminals()rsquared() - Extraction functions for 'arx', 'gets' and 'isat' objects
-
periodicdummies() - Make matrix of periodicity (e.g. seasonal) dummies
-
predict(<arx>) - Forecasting with 'arx' models
-
predict(<larch>) - Variance forecasting with 'larch' models
-
printtex()toLatex(<arx>)toLatex(<gets>) - Generate LaTeX code of an estimation result
-
recursive() - Recursive estimation
-
regressorsMean() - Create the regressors of the mean equation
-
regressorsVariance() - Create regressors for a log-variance model
-
so2data - UK SO2 Data
-
sp500data - Daily Standard and Poor's 500 index data
-
vargaugeiis() - Variance of the Impulse Indicator Saturation Gauge