Estimation of a logit model
logit.RdMaximum Likelihood (ML) estimation of a logit model.
Usage
logit(y, x, initial.values = NULL, lower = -Inf, upper = Inf,
method = 2, lag.length = NULL, control = list(), eps.tol = .Machine$double.eps,
solve.tol = .Machine$double.eps )Arguments
- y
numeric vector, the binary process
- x
numeric matrix, the regressors
- initial.values
NULLor a numeric vector with the initial parameter values passed on to the optimisation routine,nlminb. IfNULL, the default, then the values are chosen automatically- lower
numeric vector, either of length 1 or the number of parameters to be estimated, see
nlminb- upper
numeric vector, either of length 1 or the number of parameters to be estimated, see
nlminb- method
an integer that determines the expression for the coefficient-covariance, see "details"
- lag.length
NULLor an integer that determines the lag-length used in the robust coefficient covariance. Iflag.lengthis an integer, then it is ignored unlessmethod = 3- control
a
listpassed on to the control argument ofnlminb- eps.tol
numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood
- solve.tol
numeric value passed on to the
tolargument ofsolve, which is called whenever the coefficient-coariance matrix is computed. The value controls the toleranse for detecting linear dependence between columns when inverting a matrix
Value
A list.
Author
Genaro Sucarrat, http://www.sucarrat.net/